First-order Decision-theoretic Planning in Structured Relational Environments
نویسنده
چکیده
First-order Decision-theoretic Planning in Structured Relational Environments Scott Patrick Sanner Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2008 We consider the general framework of first-order decision-theoretic planning in structured relational environments. Most traditional solution approaches to these planning problems ground the relational specification w.r.t. a specific domain instantiation and apply a solution approach directly to the resulting ground Markov decision process (MDP). Unfortunately, the space and time complexity of these solution algorithms scale linearly with the domain size in the best case and exponentially in the worst case. An alternate approach to grounding a relational planning problem is to lift it to a first-order MDP (FOMDP) specification. This FOMDP can then be solved directly, resulting in a domain-independent solution whose space and time complexity either do not scale with domain size or can scale sublinearly in the domain size. However, such generality does not come without its own set of challenges and the first purpose of this thesis is to explore exact and approximate solution techniques for practically solving FOMDPs. The second purpose of this thesis is to extend the FOMDP specification to succinctly capture factored actions and additive rewards while extending the exact and approximate solution techniques to directly exploit this structure. In addition, we provide a proof of correctness of the first-order symbolic dynamic programming approach w.r.t. its well-studied ground MDP counterpart.
منابع مشابه
Practical solution techniques for first-order MDPs
Many traditional solution approaches to relationally specified decision-theoretic planning problems (e.g., those stated in the probabilistic planning domain description language, or PPDDL) ground the specification with respect to a specific instantiation of domain objects and apply a solution approach directly to the resulting ground Markov decision process (MDP). Unfortunately, the space and t...
متن کاملSelf-Taught Decision Theoretic Planning with First Order Decision Diagrams
We present a new paradigm for planning by learning, where the planner is given a model of the world and a small set of states of interest, but no indication of optimal actions in these states. The additional information can help focus the planner on regions of the state space that are of interest and lead to improved performance. We demonstrate this idea by introducing novel model-checking redu...
متن کاملFirst Order Decision Diagrams for Decision Theoretic Planning
Compact representations of complex knowledge form the core of solutions to many problems in Artificial Intelligence. Sequential decision making under uncertainty is one such important problem and Decision Theoretic Planning (DTP) has been one of the most successful frameworks for this task. Recent advances in DTP have focused on generating efficient solutions for Relational Markov Decision Proc...
متن کاملPlanning with Noisy Probabilistic Relational Rules
Noisy probabilistic relational rules are a promising world model representation for several reasons. They are compact and generalize over world instantiations. They are usually interpretable and they can be learned effectively from the action experiences in complex worlds. We investigate reasoning with such rules in grounded relational domains. Our algorithms exploit the compactness of rules fo...
متن کاملA Relational Framework to Explain the Town’s Local Actors Decision-Making Mechanism
The life of Towns has become more important and greatly emphasized in recent years and this heralds the arrival of a new era when this type of settlements is introduced as major living and investment capacities. Therefore, it is necessary to study the different aspects of towns in order to plan and manage their development and answer the question about different decision-making mechanism in the...
متن کامل